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Abstract

A mathematical programming approach for computer adaptive testing (CAT) with

many constraints on the item and test attributes is presented. Because in the approach,

mathematical programming problems have to be solved while the examinee waits for

the next item, a fast implementation of the Branch-and-Bound algorithm is needed. Eight

modifications of the algorithm specifically designed for application in CAT are described.

In order to investigate the effects of the modifications, two empirical examples were

studied. The modified Branch-and-Bound algorithm selected the items in the adaptive

tests in a realistic amount of time, while the resulting tests met the constraints.
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Introduction

In Computer Adaptive Testing (CAT), a number of approaches have been proposed

to deal with content constraints on adaptive tests. Both Kingsbury and Zara (1991)

and Segall, Moreno, and Hefter (1997) suggest to partition the item pool and to use an

algorithm to select items from these pools during the CAT or even to use separate adaptive

tests and to combine final scores afterwards. In Stocking and Swanson (1993) the items

are selected sequentially, minimizing the weighted sum of deviations from the constraints.

Recently, a new approach to constrained CAT based on the assembly of shadow tests prior

to item selection, was introduced in van der Linden and Reese (1998).

The following pseudo algorithm for this Shadow Test Approach is given in van der

Linden (2000):

Step 1: Initialize the ability estimator.

Step 2: Assemble a shadow test that meets the constraints and has maximum

information at the current ability estimate.

Step 3: Administer the item in the shadow test with maximum information at the

ability estimate.

Step 4: Update the ability estimate.

Step 5: Return all unused items to the pool.

Step 6: Adjust the constraints to allow for the attributes of the item administered.

Step 7: Repeat Steps 2-6 until m items have been administered.

If the item pool is well designed, the shadow test approach guarantees that all

constraints are met for every CAT assembled. In order to gain these profits an integer

programming formulation of the test assembly problem in Step 2 is necessary.

Several algorithms have been proposed for solving integer programming problems

in test assembly, for example, those in Contest (Timminga, van der Linden & Schweizer,

1996), the heuristic for the Weigthed Deviation Model (Swanson & Stocking, 1993) and

several implementations of the Network-Flow algorithm by Armstrong, Jones & Wang

(1995). These algorithms have proved to be very useful in test assembly, but they may

result in occasional constraint violation, or in a sub-optimal solution. So, when they
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are applied it is not always possible to gain full profits of the shadow test approach.

Alternatively, a Branch-and-Bound (B&B) algorithm can be used to find the optimal

solution (Adema, 1992, Timminga, van der Linden, and Schweizer, 1996). However,

the B&B algorithm is rather time consuming. Especially for large adaptive tests or tests

with an item-set structure, this might be a problem since in CAT only a small amount of

time is available for selecting the next item.

The goal of the present research is to find modifications of the B&B algorithm such

that the shadow test approach can be used for the problem of assembling adaptive tests

with large number of constraints from large item pools. In this paper, first a general

formulation of a mathematical programming model for selecting the k-th item in an

adaptive test as well as the B&B algorithm is given. Then, eight modifications of the

algorithm applicable in a CAT-framework are described. To investigate the effect of these

modifications, two test assembly problems were studied, and their results are presented.

Finally, the modifications are evaluated and some recommendations about their use are

given.

Mathematical Programming Model

In order to apply mathematical programming techniques for solving the problem of

selecting the next item, the problem has to be written in a specific format. An objective

function that will be optimized, has to be defined and the test specifications have to be

written as constraints. Let,

Ii(L1) be the information provided by item i at the estimated ability level 0k-17

N be the number of items in the item pool,

i = 1, N be the index ranging over all items,

S be the number of sets in the pool,

s = 1, S be the index ranging over all item sets,

xi and ys denote 0-1 decision variables for selecting item i or item set .s,

n'snin be the minimum number of items in set s to be selected when s is in the test,

nrx be the maximum number of items in set s to be selected when s is in the test,

6
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V9 be a subset of indices of sets with attribute g,

be a subset of indices of items with attribute j,

V, be a subset of indices of items in set s,

k be the index ranging over the items in the adaptive test,

Sk_1 be the set of indices of k 1 item already selected,

a,,, bi be values of the set attributes and the item attributes,

n9, n3 be attribute values of the entire test,

71/ be the fixed total test length.

Model

The model for selecting the k-th item in the adaptive test can be formulated as

follows:

max E Ii (-1-9k_1) xi
i=i

subject to:

E xi = z
i=i

Easys < n9
8E1,9

bixi < n
iEvi

Exi = k 1

iESk_1

< E xi < nrxy,
iE V3

Xi) Ys E {0,1} .

(maximize information function) (1)

(test length) (2a)

(constraints at set level) (2b)

(constraints at item level) (2c)

(items already presented in the test) (2d)

(number of items selected for set s) (2e)

(2f)
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B&B Algorithm

It is important to notice that both variables xi and ys are 0-1 variables. So, the B&B

algorithm can be applied. Intuitively, the algorithm can be described in the following

manner. The B&B algorithm starts with the computation of the optimal solution to the

relaxation, i.e., the problem where the integer constraints in Equation 2f are left out. The

problem is now in the class of linear programming problems, which are much easier

to solve. The computation is done by the simplex method, a well known method for

solving linear programming problems (Winston, 1994). Since the set of constraints of

the relaxation is smaller than and contained within the set of the original problem, the

objective value of the relaxation will be higher, and it can be used as an upper bound -2' for

the solution of the test assembly problem. When the solution of the relaxation only has

integer values, the optimal solution to the test assembly problem is already obtained. If

not, the problem is branched in two new problems. In one problem a non-integer variable

is fixed at zero. In the other this variable is fixed at one. These new problems are treated

the same way, until all branches are searched. Whenever a solution is infeasible, i.e.,

conflicts with the constraints, or when the value of the relaxation (I) is smaller than the

lower bound (z), i.e., the best integer solution found so far, this branch is pruned. The

reason is that it is no longer possible to meet the constraints or to find a better solution,

because some variables xi have been fixed. The remaining problems are branched by

fixing new variables, and bounds for the new problems are calculated. When a better

integer solution is found, the value of z is updated. The B&B method terminates when

all branches have been investigated or pruned.

Example

To illustrate the B&B algorithm, a small test assembly problem is introduced. The

objective function in this problem is to optimize Fisher's information function at a certain

ability estimate. Three constraints are involved. Item 1 and 2 are in the same content

class. From this content class at least one item should be in the test. The word count for

the total test should be less or equal to 150. Finally, since Item 2 and Item 3 contain clues

to each other, only one of them can be in the test. The 0-1 LP formulation of this problem
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is given in Equation 3 through Equation 7:

subject to:

max 0.805x1 1.158x2 0.753x3 (3)

xl + x2 > 1,

80x1 + 79x2 + 68x3 < 150,

x2 + x3 < 1,

xi E {0, 1}.

(4)

(5)

(6)

(7)

The B&B search is presented in Figure 1. The upper half of a node consist of a

problem number and the objective value of the relaxation; the lower half contains the

solution of the relaxed problem. The optimal solution is in Node 4, which has a feasible

solution with the highest value for the objective function.

Insert Figure 1 at about here

Pseudo Algorithm

The B&B method can be described by the following pseudo algorithm.

Step 1. Select a node and solve the relaxation associated with it.

Step 2. When the value of the relaxation is smaller than the lower bound for the

optimal solution, no better solution can be found in this branch. Prune the branch. Go to

Step 6.

Step 3. When the value of the relaxation is greater than the lower bound, but the

values of xi are not integer, the branch might contain an improvement. Go to Step 5.

Step 4. When the solution of the relaxation is feasible and is better than the best

solution found so far, adjust the lower bound. Delete all nodes with upper bounds lower

than the new lower bound. Go to step 6.

9



Modifications of the Branch-and-Bound Algorithm - 8

Step 5. Branch the node. In one branch the value of xi is set equal to xi = 0. In the

other branch xi = 1.

Step 6. Stop when all branches are investigated or pruned, otherwise go to Step 1.

A formal description of the algorithm is given in Nemhauser & Wolsey (1988, page

355).

In the next section eight modifications of this general algorithm are described.

Modifications of the B&B algorithm

The B&B algorithm is in the class of implicit enumeration methods. Algorithms in

this class search the set of possible integer solutions in such a way that not all individual

possibilities need be considered. Nevertheless their worst-case performances sometimes

are considerably time consuming. This feature of the B&B algorithm is especially

unfavorable for CAT, where the time available for selecting the next item is limited. In

this context, accuracy and speed are essential to apply an algorithm. Therefore, measures

to improve the performance of the B&B algorithm were investigated. From the theory of

integer programming several improvements were derived. Eight of such improvements

are described below.

1. Starting Solution

The first modification is the use of a starting solution. In the general algorithm no

starting solution is used and the lower bound is set equal to z = oo. Whenever an integer

solution to the problem is known, it can be used as a starting solution and this solution

will provide a better initial lower bound.

This observation can be used for speeding up the B&B algorithm. As already noted in

Step 2, a branch is of no interest and can be pruned, when the upper bound of the objective

values of solutions in the subset is smaller than a lower bound to the objective value of

the optimal solution. Using a good starting solution might provide a strong lower bound

10
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and hence a lot of branches might be pruned. So fewer branches have to be investigated

and the algorithm finishes earlier (see also Adema, 1992).

Especially for CAT, this feature might be of interest. When the shadow test approach

(van der Linden and Reese, 1998) is used and the constraints do not depend on the

estimated theta B, the solution to the problem in Iteration k 1 can be used as a

starting solution to the problem in Iteration k, because the constraints in both problems

are generally identical. After a number of items, the ability estimate of the examinee

stabilizes and the starting solution even provides stronger lower bounds. First remind

that the problem in Iteration k is based on the ability estimate 0k-1, and the problem in

Iteration k 1 is based on the ability estimate 0k_2. When the ability estimate stabilizes

after a number of items, 0k-2 is not much different from 74-1. Therefore, the objective

function in Iteration k 1 is not much different from the objective function in Iteration k,

and since the constraints in both iterations are generally equal, the solution to the problem

in Step k 1 provides a good approximation to the solution of the problem in step k.

When no prior information about the examinee is known, the initial estimate is often

set equal to Bo = 0 for all examinees. For this initial estimate, the first item in a CAT

can be calculated in advance. Once available, it can be used as a starting solution for all

examinees. When a variable initial ability estimate is used, a different strategy should

be followed. Instead of calculating one starting solution in advance, starting solutions

should be calculated for a number of points on the ability scale Boi, j = 1..J, that cover

a sufficiently large part of the ability range. The solution for Bo; closest to the initial

estimate of the examinee, 00, can be used as a starting solution.

2. Integer slack variables

A second improvement (Williams, 1990, page 204) deals with formulation of the

constraints. Consider an arbitrary constraint > aixi < b, where ais and b are integer

constants and xi E {0,1}. An example is the word count constraint given in Equation 5,

where ai represent the number of words per item, and b is the maximum number of words

in the test. Other examples are time-limit constraints, content constraints, constraints on

gender-orientation of the items, or on item format.

11



Modifications of the Branch-and-Bound Algorithm - 10

Because the variables xi are integer, the difference b E aixi will also be integer.

So, it is possible to introduce an integer slack variable 6, and reformulate the constraint

as

aixi + S = b. (8)

During the B&B search, one could also branch on these integer slack variables.

When applied to the problem in Equation 1 through Equation 2f, two versions of this

modification are needed:

Easys + 69 = n9
sEV9

Ebixi + 6.; =
iEVj

(9)

(10)

Both at set level and at item level some constraints can be rewritten as equalities.

There is advantage in introducing integer slack variables and giving them priority in the

branching process (see next modification). This idea is due to Mitra (1973).

3. Priority ordering

A general recommendation concerning B&B methods is that one should branch

on variables with the greatest impact first (Williams, 1990, page 205). Applying this

recommendation to the general algorithm involves a more detailed specification of Step

5. In Step 5 the set of possible solutions is split in two parts by fixing a variable. The

algorithm should be modified such that a node is divided into two branches by fixing a

variable with high priority.

The gain involved in this modification can be illustrated by considering an assembly

problem where both set and item variables are present. In this case, difference between

the impact of their variables exists. Fixing item variables has little effect, but fixing set

variables forces the algorithm to select items from the sets that are chosen to be in the

test. Also, if set variables are fixed at zero, all item variables that belong to these sets

are automatically fixed at zero. A different example deals with the integer slack variables

12
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introduced above. Integer slack variables 5 often have greater impact on the problem than

the other variables in the constraint. In a content constraint, the slack variable determines

the number of items or number of sets with a certain content to be in a test.

4. Branching strategy

Now that a priority order can be made, Step 5 of the algorithm could be specified

more in detail. Variables with high priority should be chosen first. However, the question

remains which variable to choose in the same priority class. In modern 1P-solvers some

options are provided (110G, 1999). The solution of the LP-relaxation xRp, calculated

in Step 1, is often used as an indicator. In this relaxation, the variables do not have to

take integer values, so the variables xiRp can be written as the sum of an integer and a

fractional part, x), = i + flu), where 0 < fp < 1.

The Maximum Infeasibility Rule. This rule branches on the variable whose

fractional value flp deviates most from zero and one. In this way, all variables get integer

values slowly but surely.

The Minimum Infeasibility Rule. This rule branches on the variable whose fractional

value fjip deviates less from zero or one. The idea is to find a good integer solution to

the problem in a small amount of time. This solution provides a strong lower bound and

branches are pruned earlier.

More Intelligent Branching Rules. Rules, like branching on pseudo costs or on

pseudo reduced costs (Adema, 1992, Forrest, Hirst and Tomlin, 1974, Mitra, 1973), can

also be applied. These rules generally need more time to find a sharp lower bound, but

often perform better over all.

Automatic Selection of Branching Variable. This rule is a combination of the above

described rules. An algorithm determines which rule seems most promising and decides

which rule is applied.

In CAT, a choice should be made between the intelligent branching rules and the

minimum infeasibility rule. The maximum infeasibility rule will probably take to much

time. If time is very limited the minimum infeasibility rule will probably perform better,

because its first shot often provides a good solution. If a little more time is available the

13
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intelligent branching rule is more likely to produce the best result. Its first shot may be

worse than for the minimum infeasibility rule but it will find improvements faster and

eventually result in a better solution.

5. Node Selection

In Step 1 of the general algorithm, a node is selected to be investigated. Instead

of randomly choosing a node, more advanced strategies can be used. The depth-first

strategy, the best-bound strategy and the best-estimate strategy (Nemhauser and Wolsey,

1988, pages 358-359, e.g.) are reasonable alternatives.

The Depth-First Strategy. This strategy selects the most recent node. Whenever this

strategy is used, a different variable is fixed in every iteration. In this way, an integer

solution is found in a small amount of time. Unfortunately, in combination with the use

of a priority ordering, this strategy has a serious drawback. Due to the priority ordering,

variables with high priority are fixed first and variables with lower priorities last. After

finding the first integer solution, the most recent problems result from fixing a low-

priority variable. In the subsequent iterations, only the values of the variables with low

priority are changed. So both modifications counteract.

The Best-Bound Strategy. This strategy selects the node with best optimal value for

the relaxed problem. Whenever the relaxed problem provides a good upper bound, the

difference between this upper bound and the lower bound is a good indication of the

improvement that can be reached by selecting this node.

The (Alternative) Best-Estimate Strategy. This strategy selects a node by estimating

its best integer solution. This estimate is made by correcting for the fractional values of

the variables xiRp (e.g. see Mitra, 1973, Nemhauser & Wolsey, 1988).

In a CAT program with item sets, some variables have higher priorities than others.

Therefore, the depth-first strategy is unsuitable for obtaining results in a small amount of

time. Both remaining strategies have their pro's and con's. The best-bound strategy has a

time advantage, because the objective values of the relaxations are known. On the other

hand, the relaxed problem does not provide a very good bound. The best-estimate strategy

performs better in selecting promising problems, but more time is needed for calculating

14
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the estimates. So, no theoretical arguments can be offered to prefer one strategy over the

other.

6. Special Ordered Sets (SOS)

The next modification deals with a special kind of constraints. A special ordered set

of Type 1 (Beale and Tomlin, 1969) is a set of variables from which at most one can be

equal to one:

k

x3 <1.
j=1

When these kind of constraints are in a problem, the fifth step of the algorithm can be

made more efficiently (e.g., Forrest, Hirst and Tomlin, 1974). In Step 5 of the algorithm

a node is branched by fixing a variable at x, = 0 or at xi = 1. However, instead of

branching a node by fixing a single variable, it is possible to fix half the number of items

in the special ordered set. First split the variables x3, j = 1, ..., k into two subsets 4

where j =1,..., f and 4,where j = f +1,...,k. Since only one variable in the entire set

can be equal to xi = 1, this variable is either in the first half or in the, second half of this

set. So, either

or

= 0 j =1, f,

E
x3

< 1.-
j=f +1

Exi 5 1,

j=i
xi = 0 j= f +1, ..., k.

In this way the node can be branched, and half the number of variables, rather than one,

is fixed in the same iteration.

15
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This modification of the fifth step can be applied in several ways. In a test assembly

context these kind of constraints appear, for example, when a single item has to be chosen

from a set.

7. Fixing Variables with Near-Integer Values

Some ideas to speed up the B&B algorithm were proposed by Crowder, Johnson

and Padberg(1983). One of them deals with fixing variables. For a pure zero-one linear

progrimming problem, it can be shown that the following implications hold: After Step 1,

the objective value of the relaxation, zlip, the continuous optimal reduced costs di for all

items j = 1, N, and a true lower bound z are known. Reduced costs are the amounts

by which the coefficient of an unselected item in the objective function must be improved

before this item is selected in the test in an optimal solution of the LP In Crowder Johnson

and Padberg (1983) the following theorem was proved.

The values of ziRp, di, and z can be used to fix variables of unselected items at the

value 0 or 1:

(1) fix x3 to 0 if in the solution of the relaxation x3 = 0 and z z < di;

(2) fix x3 to 1 if in the solution of the relaxation x3 = 1 and z z < di.
In Adema, Boekkooi- Timminga, and van der Linden (1991) this idea is applied, but

instead of z the value K2z6 was used, where K2 < 1. In this way, a lot of variables can

be fixed early during the B&B-search and the speed of the algorithm increases.

8. Time Limit.

The intention of all previous modifications is to speed up the Branch-and-Bound

algorithm. Unfortunately, still no guarantee can be given about the time needed for finding

an optimal solution. Before the algorithm is applied in a CAT environment, this problem

should be overcome in one or the other way. A rather straightforward way is to limit

the time available for finding the optimal solution or to limit the number of solutions

examined. Although the solution provided by this modification is less than optimal, the

precision of the CAT procedure will probably not deteriorate.. When the B&B algorithm

searches for the optimal solution, the best items are generally chosen early in this search.

16
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Later on only small improvements are found. So, a lot of effort may be invested in

finding only small improvements, that is in selecting items that only slightly improve

the measurement precision. Based on this observation the time or number of solutions

examined can be limited when the shadow test approach is used. After all, only the best

item in the shadow test is presented to the candidate. So for choosing the best item limiting

the search need not be always a problem.

Examples.

The modifications of the B&B algorithm presented in the previous section were

applied in empirical CAB. In this way, the effects of the modifications could be examined.

Both an admission test without item sets and a high-stakes reading test with item sets were

used. For the admission test three modifications were of interest; branching strategy, node

selection and the use of feasible starting solutions. Besides, priority ordering and the

introduction of integer slack variables were examined for the reading test.

To run this study, CAT software developed at the University of TWente was used. This

software made calls to the solver in the CPLEX 6.5 package (ILOG, 1999) to calculate

the shadow tests. For the branching strategy (BS) five options were at hand in the CPLEX

package:

1 branch on variable with minimum infeasibility,

2 branch variable automatically selected,

3 branch on variables with maximum infeasibility,

4 branch based on pseudo costs,

5 branch based on pseudo-reduced costs

The last two strategies are more intelligent branching rules. For node selection (NS)

four options were at hand:

17
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1 depth-first search,

2 best-bound search,

3 best-estimate search.

4 alternative best-estimate search

The seventh modification, dealing with near integer variables could not be

implemented in the CPLEX package. All simulations were carried out on a Pentium

II-266, 64 Mb computer.

Example 1.

The item pool for the admission test contained 753 items. The item pool fitted the

three-parameter logistic model. So, the chance that candidate j obtains a correct answer

to an item i was equal to

exp [1.7a, (0 b1)]
i = 1, ...,N j = 1, M .Pi(0i) = + (1 ci) 1 + exp [1.7ai(ei bi)]

(12)

where Oj is the ability level of candidate j, ai the discrimination parameter, bi the difficulty

parameter and ci the guessing parameter of item i. The general model for selecting the

k-th item is presented in Equation 1 through Equation 2f. Since this item pool had no item

sets no constraints at set level (Equation 2b), or constraints defining the number of items

to be chosen per set (Equation 2e) needed to be formulated. The final model consisted of

753 variables and 25 constraints. The length of the CAT was set equal to 50 items.

For this problem, three modifications were relevant; problem selection, branching

strategy and the use of feasible starting solutions. One hundred CATS were simulated

for each combination of modifications. In this simulation study, the ability parameters

of the examinees were standard normally distributed. The initial estimate of 0 was set

equal to 30 = 0. The average time needed to select the next item was used as a measure

to compare the settings. For problem selection and branching strategy, the results are

presented in Table 1.
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Insert Table 1 at about here

As can be seen, the best problem selection rule was best-estimate search, and the best

braching strategy was the option of automatically selecting the branching variable.

Finally, for several combinations of problem selection and branching strategy,

feasible starting solutions were used. The effects of a the starting solutions depended

on the other modifications of the algorithm. In one case, a small improvement in

performance was found. In the other, the use of feasible starting solutions resulted in a

small deterioration of the speed. However, in general the use of feasible starting solutions

did not result in a great improvement of performance.

Example 2.

The second pool congigts of 723 items divided into 97 sets. The items fitted the

three-parameter logistic model. The general model for selecting a next item is provided

in Equation 1 through Equation 2f. In this application at set level 18 constraints were

defined, at item level 22 constraints, and to ensure that the numbers of items selected

per set were between their lower and upper bounds 97 additional constrains were needed.

So, the number of constraints in this model was 139. For security reasons, the exact

formulation of the model can not be given.

It should be noted that in a CAT with item sets two degrees of complexity occur. Since

a stimulus can only be presented once, a minimum number of items has to be selected from

the same set consecutively. When a stimulus is selected, but the minimum number of items

is not presented jet, only the items that belong to the specific set have to be searchecrfor

the next item. When this minimum number is reached, the next item is chosen either from

the set or from a new one. The latter problem is much harder to solve, since the number

of items to be chosen from is much larger.

In order to illustrate the modifications, one hundred CAB were simulated for several

combinations of modifications. The results are presented in Table 2. Each CAT consisted

of 31 items. The ability parameters of the examinees were randomly distributed, and the

19
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initial ability estimates were set equal to 80 = 0. The time needed for selecting the next

item varied from 0.5 to 2.8 seconds.

Insert Table 2 at about here

In this example, the settings were optimized in the following manner. First the

problem selection rule was modified. The depth-first search performed best. This is a

remarkable result because in the depth-first strategy no information about the variables is

taken into account. Then integer slack variables were added to the formulation. Adding

these variables did not result in any improvement. Then, the best branching strategy

was investigated. Branching on variables with maximum infeasibility performed best.

Furthermore, integer slack variables were introduced again. But also with different

branching strategies, introducing these variables did not improve performance in any

way. Subsequently, a priority ordering was introduced. This modification improved

the performance of the algorithm. Without integer slack variables the improvement was

even larger. Finally the use of feasible starting solutions was studied. However, this

modification did not result in a faster algorithm. In this example, the problems were also

scanned for SOS's. Unfortunately no SOS's were present, so this modification could not

be evaluated.

Discussion

In this paper, several modifications of the B&B algorithm have been studied. For

the two examples at hand the following conclusions could be drawn. The use of feasible

starting solution did not improve the performance of the algorithm. However, introducing

feasible starting solutions guarantees that a solution to the problem of selecting the next

item was found, even when the time available for selecting the next item is limited. In

both examples, the next item was selected within a small amount of time. Therefore, no

time limit was needed. On the other hand, when larger item pools or more constraints

are involved in the test assembly process, the B&B search might take a lot of time and a
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time limit might be necessary for finding the next item in a reasonable amount of time.

In those cases, the use of feasible starting solutions still is a good option. From this study

it should be concluded that using a feasible starting solution is a conservative strategy. It

depends on the test assemblers policy, whether it should or should not be used.

Introducing slack variables did not prove to be very useful in the second example.

This might depend on the example. However, it is also possible that the solver is very

efficient in handling the kind of constraints defined in Equation 8, while introducing

additional variables deteriorates the performance. Introducing a priority ordering turned

out to be an important modification. It resulted in an increased speed for all combinations

of modifications investigated. Both for the branching strategy and for the problem

selection strategy no general recommendations can be given. Both examples showed

great differences. It should however be mentioned that choosing the best settings for

these modifications resulted in a considerable improvement of performance. Since no

SOS's occurred in the examples, their effect was not studied in practise.

From the results it can be concluded that the performance of the algorithm increases

considerably when modifications are used. Even for large and complicated test assembly

problems good solutions were found in a small amount of time. The modifications are

effective in limiting the search. However, when item selection still takes too much time,

the idea to limit the time available for the B&B search can be very useful.. An other

idea is to carry out computations in advance. When a candidate is answering a question,

meanwhile, the next item can be selected.

Besides these technical measures to improve performance of the B&B algorithm,

current developments in Information Technology are on our side. For example, in this

study the 6.5 version of CPLEX was used. Where in an earlier version, the optimal

solution could not be obtained for some combinations of modifications, CPLEX 6.5 did

not have these problems. Even the most time consuming calculation took less than thirty

seconds.
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Table 1

Time(s) for selecting the next item.

Problem Branching Strategy
Selection 1 2 3 4 5 Average

1 7.40 6.46 7.84 6.37 6.85 6.98
2 7.51 5.26 7.71 5.82 6.23 6.51
3 7.40 5.24 6.95 5.58 6.11 6.26
4 7.76 5.83 7.44 5.85 6.63 6.70

Average 7.52 5.70 7.48 5.91 6.46
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Table 2

Optimal settings B&B algorithm for a Reading Comprehension test.

Modifications Average time(s) for selecting
the next itemSS IS PO BS PS

u

2
2
2
2
2

1

2
3

4
1

1.56
1.65
1.68
1.75
2.81

u 2 2 2.13
u 2 3 2.54
u 2 4 2.56

1 3 1.40
3 3 1.05
4 3 1.73

u 1 3 2.52
u 3 3 1.47
u 4 3 2.14
u u 1 3 1.48
u u 3 3 1.28
u u 4 3 1.42

u 1 3 1.27
u 3 3 1.13
u 4 3 0.50

u u 1 3 1.73
u u 4 3 2.36
u u u 1 3 1.47
u u u 4 3 1.50

u - used.
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Figure Caption

Figure I : Tree representing Branch-And-Bound Search
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